
THE ULTIMATE

XSS
PROTECTION CHEATSHEET
FOR DEVELOPERS V1.0

Ajin Abraham

Author of OWASP Xenotix XSS Exploit Framework |opensecurity.in

The quick guide for developers to protect their web

applications from XSS.

The is a compilation of information available

on XSS Protection from various organization, researchers, websites, and my own experience.

This document follows a simple language and justifying explanations that helps a developer

to implement the correct XSS defense and to build a secure web application that prevents

XSS vulnerability and Post XSS attacks. It will also discuss about the existing methods or

functions provided by various programming languages to mitigate XSS vulnerability. This

document will be updated regularly in order to include updated and correct in information

in the domain of XSS Protection.

XSS or Cross Site Scripting is a web application vulnerability that occurs when untrusted data

from the user is processed by the web application without validation and is reflected back

to the browser without encoding or escaping, resulting in code execution at the browser

engine.

 Reflected or Non-Persistent XSS

 Stored or Persistent XSS

 DOM based XSS

 mXSS or Mutation XSS

Reflected or Non-Persistent XSS is a kind of XSS vulnerability where the untrusted user input

is immediately processed by the server without any validation and is reflected back in the

response without encoding or escaping resulting in code execution at the browser.

Stored or Persistent XSS is a kind of XSS vulnerability where the untrusted user input is

processed and stored by the server in a file or database without any validation and this

untrusted data is fetched from the storage and is reflected back in response without

encoding or escaping resulting in permanent code execution at the browser whenever the

stored data is reflected in the response.

DOM Based XSS is a form of client side XSS which occurs in an environment where the

source of the data is in the DOM, the sink is also in the DOM, and the data flow never leaves

the browser. It occurs when an untrusted data is given at the source is executed as a result

of modifying the DOM “environment” in the browser. DOM XSS occurs when the untrusted

data is not in escaped or encoded form with respect to the context.

mXSS or Mutation XSS is a kind of XSS vulnerability that occurs when the untrusted data is

processed in the context of DOM's innerHTML property and get mutated by the browser,

resulting as a valid XSS vector. In mXSS an user specified data that appears harmless may

pass through the client side or server side XSS Filters if present or not and get mutated by

the browser's execution engine and reflect back as a valid XSS vector. XSS Filters alone won't

protect from mXSS. To prevent mXSS an effective CSP should be implemented, Framing

should not be allowed, HTML documents should specify the document type definition that

enforce the browser to follow a standard in rendering content as well as for the execution

of scripts.

XSS can be mitigated if you can implement a web application that satisfies the following

rules.

All the untrusted data should be validated against the web application’s logic before

processing or moving it into storage. Input validation can prevent XSS in the initial attempt

itself.

Decoding and Parsing order means a lot. If the encoding or decoding of the untrusted

data is done in the wrong order or wrong context, again there is a chance of occurrence of

XSS vulnerabilities. The encoding or escaping required for different context is different and

the order in which these encoding should be done depends on the logic of the

application.

A typical untrusted data can be reflected in html context, html attribute context, script

variable context, script block context, REST parameter context, URL context, style context

etc. Different kind of escaping methodologies has to be implemented with different

context for ensuring XSS Protection.

For untrusted string in the context of HTML, do HTML escape.

 Example:

1. <h1> Welcome html_escape(untrusted string) </html>

Symbols Encoding

& &

< <

> >

" "

` `

' '

/ /

For untrusted string in the context of HTML attribute, do HTML escape and always quote

your attributes, either (‘ or “) never use backticks (`).

 Example:

1.

Except for alphanumeric characters, escape all characters with ASCII values less than 256

with the format (or a named entity if available) to prevent switching out of the

attribute. Properly quoted attributes can only be escaped with the corresponding quote.

Unquoted attributes can be broken out of with many characters, including

and .

For untrusted string in the context of Event Handler Attribute, do JavaScript Escape first

and then perform HTML escape since the Browser performs HTML attribute decode before

JavaScript string decode. For untrusted string in the context of JavaScript, do JavaScript

String Escape. And always quote your attributes, either (‘ or “) never use backticks (`).

 Example:

1. //In the context of Event Handler
2. <img src="x" onload="jsFunction('html_escape(

javascript_string_escape(untrusted string))')">
3. //In the context of JavaScript
4. <script type="text/javascript">
5. var abc = 'javascript_string_escape(untrusted string)';
6. </script>

Except for alphanumeric characters, escape all characters less than 256 with the format

to prevent switching out of the data value into the script context or into another attribute.

Do not use any escaping shortcuts like because the quote character may be matched by

the HTML attribute parser which runs first. These escaping shortcuts are also susceptible to

"escape-the-escape" attacks where the attacker sends and the vulnerable code turns that

into which enables the quote. If an event handler attribute is properly quoted, breaking

out requires the corresponding quote. Unquoted attributes can be broken out of with many

characters including and Also, a closing tag will close a

script block even though it is inside a quoted string. Note that the HTML parser runs before

the JavaScript parser.

For untrusted URL path string in the context of HTML Attribute, do URL Escape the path

and not the full URL. Always quote your attributes, either (‘ or “) never use backticks (`).

Never allow or to include schemes like or or their tricky

combinations like ()

 Example:

1. l
2.
3. <form action="/?i=url_escape(untrusted string)" method="GET"></form>

Except for alphanumeric characters, escape all characters with ASCII values less than 256

with the escaping format. If or attribute is properly quoted, breaking out requires

the corresponding quote. Unquoted attributes can be broken out of with many characters

including and . Note that entity encoding is useless in this context.

For untrusted string in the context of HTML style attribute, do CSS String Escape first and

then HTML escape the string since order of parsing is HTML Parser first and then CSS

Parser. Always quote your attributes and in this case quote style attribute with (“) and CSS

string with (‘) and never use backticks (`). For untrusted string in the context of CSS, do

CSS String Escape. Also make sure that the untrusted string is within the quotes (‘ or “)

and never use backticks (`). Do not allow expression and its tricky combinations like

(expre/**/ssion).

 Example:

1. //In the context of HTML style Attribute
2. <p style="font-

family:'html_escape(css_string_escape(unntrusted string))'">
3. Hello World!
4. </p>
5. //In the context of CSS
6. <style>
7. #css_string_escape(untrusted string)
8. {
9. text-align: center;
10. color: red;
11. }
12. </style>

Except for alphanumeric characters, escape all characters with ASCII values less than 256

with the escaping format. Do not use any escaping shortcuts like because the quote

character may be matched by the HTML attribute parser which runs first. These escaping

shortcuts are also susceptible to "escape-the-escape" attacks where the attacker sends

and the vulnerable code turns that into which enables the quote. If attribute is quoted,

breaking out requires the corresponding quote. Unquoted attributes can be broken out of

with many characters including and . Also, the tag will

close the style block even though it is inside a quoted string and note that the HTML

parser runs before the CSS parser.

For untrusted HTML in the context of JavaScript string, do HTML Escape first and then

JavaScript String Escape, preserving the order.

 Example:

1. <script>
2. function xyz()
3. {
4. var elm=document.getElementById("disp");
5. elm.innerHTML="javascript_string_escape(html_escape(

untrusted string))";
6. }
7. </script>
8. <body onload=xyz()>

9. <div id="disp"></div></body>

Make a whitelist of allowed tags and attributes that the web application should accept

from the user. Blacklists can be easily bypassed.

In HTML documents you can specify it in meta tag like

Injections before meta tag can overwrite the default charset and allows wide range of

characters to create a valid XSS vector.

http://opensecurity.in/labz/opensecurity_meta.html

DOCTYPE (DTD or Document Type Declaration) tells your browser to follow the standard

in rendering the HTML, CSS as well as how to execute scripts. Always use

before .

HTTP Response Headers Description

X-XSS-Protection: 1; mode=block This header will enable the

browser's inbuilt Anti-XSS

filter.

X-Frame-Options: deny This header will deny the page

from being loaded into a

frame.

X-Content-Type-Options: nosniff This header will prevents the

browser from doing MIME-

type sniffing.

Content-Security-Policy: default-src 'self' This header is one of the most

effective solution for

preventing XSS. It allows us to

enforce policies on loading

objects and executing it from

URLs or contexts.

Set-Cookie: key=value; HttpOnly The Set-Cookie header with

the HttpOnly flag will restrict

JavaScript from accessing your

cookies

Content-Type: type/subtype;

charset=utf-8

Always set the appropriate

Content Type and Charset.

Example: HTTP Response in

the case of json, use

application/json, for plaintext

use text/plain for html, use

text/html etc along with

charset as utf-8.

Sanitize and encode all user supplied data properly before passing out through HTTP

headers. CRLF Injection can destroy and Bypass all your security headers like CSP, X-XSS

Protection etc.

TRACE is an HTTP method used for debugging which will reflect the request headers from

the client, back to the client in HTTP Response. Injections in request header can result in

XSS when TRACE method is used.

CSP or Content-Security Policy will enforce policies on browser which specifies what resource

a browser should load and from where the browser should load the resource along with

specifying the loading behavior of a resource defined by a directive. This documentation will

give you a better idea on how you can define a CSP based on your requirements.

The CSP directives of our interest are:

Directive Description

default-src This directive specifies the loading policy for all

resources type in case of a resource type specific

directive is not defined.

script-src

This directive specifies the domain(s) or URI from

which the web application can load scripts.

object-src

This directive specifies the domain(s) or URI from

which the web application can load plugins like Flash.

style-src

This directive specifies the domain(s) or URI from

which the web application can load CSS stylesheets.

img-src.

This directive specifies the domain(s) or URI from

which the web application can load images.

media-src

This directive specifies the domain(s) or URI from

which the web application can load video or audio.

frame-src

This directive specifies the domain(s) or URI that the

web application can load inside a frame.

 font-src This directive specifies the domain(s) or URI from

which the web application can load fonts.

connect-src.

This directive specifies the domain(s) or URI to which

you can connect using script interfaces like XHR,

WebSockets, and EventSource.

plugin-types

This directive specifies the MIME types of content for

which plugins could be loaded. (Not yet properly

supported by the latest browsers)

form-action

This directive specifies the URIs to which HTML form

submissions can be done.(Not yet properly supported

by the latest browsers)

reflected-xss

This directive tells browser to activate or deactivate

any heuristics used to filter or block reflected cross-

site scripting attacks and is equivalent to the effects

of the X-XSS-Protection header. (Not yet properly

supported by the latest browsers). reflected-xss block

is equivalent to X-XSS-Protection: 1; mode=block

There are four source expressions.

Source expressions

Description

none

Matches with nothing.

self

Matches only from the current domain

excluding sub domains.

unsafe-inline

Allows inline JavaScript and CSS. You shouldn't

use this unless you are sure that a non-

sanitized user input is never reflected back

inline.

unsafe-eval

Allows eval() in JavaScript. You shouldn't use

this unless you are sure that a non sanitized or

dangerous user input is never inserted into the

eval() function.

A typical modern web application requires unsafe-inline and unsafe-eval sources with script-

src directive for proper functioning.

A CSP header like (Content-Security-Policy: default-src 'self') cannot be applicable for most

of the modern web applications.

This (default-src 'self') policy means that fonts, frames, images, media, objects, scripts, and

styles will only load from the same domain or same origin, and connections will only be

made to the same origin. However this is not feasible for most of the modern web

applications because for example web applications may use Google fonts, shows a

Slideshare document in a frame, or include scripts for embedding Twitter or Facebook

widgets or for loading jQuery library. So developers tends to avoid CSP thinking that it is

complex to implement or implement CSP in a wrong way.

We can always override the default-src directive and use it effectively for implementing a

CSP that is suitable for our needs as well as prone to XSS attacks.

Consider a typical CSP

Content-Security-Policy: default-src 'self'; style-src 'unsafe-inline' 'self'

http://fonts.googleapis.com http://themes.googleusercontent.com; frame-src

http://www.slideshare.net www.youtube.com twitter.com; object-src 'none'; font-src 'self'

data: http://themes.googleusercontent.com http://fonts.googleapis.com; script-src 'unsafe-

eval' 'unsafe-inline' 'self' http://www.google.com twitter.com

http://themes.googleusercontent.com; img-src 'self' http://www.google.com data:

https://pbs.twimg.com http://img.youtube.com twitter.com

Explanation of each directives and source expressions

Policy Description

default-src 'self'; Allows fonts, frames, images,

media, objects, scripts, and styles

to be load only from the same

domain

style-src 'unsafe-inline' 'self'

http://fonts.googleapis.com

http://themes.googleusercontent.com;

Allows using inline style or

stylesheet from same domain,

http://fonts.googleapis.com and

http://themes.googleusercontent.

com

frame-src youtube.com twitter.com;

Allows the web application to load

frames only from youtube.com

and twitter.com.

object-src 'none';

Allows no objects.

font-src 'self' data:

http://themes.googleusercontent.com

Allows the web application to load

font from same domain and

http://themes.googleusercontent.

com

script-src 'unsafe-eval' 'unsafe-inline'

'self' http://www.google.com

twitter.com

http://themes.googleusercontent.com;

Allows the web application to load

script from same domain,

http://www.google.com,

twitter.com and

http://themes.googleusercontent.

com. The 'unsafe-inline' source

expression allows execution of

inline JavaScript and 'unsafe-eval'

source expression allows the eval()

function in JavaScript. (dangerous)

img-src 'self' data:

http://www.google.com

https://pbs.twimg.com

http://img.youtube.com twitter.com

Allows the web application to load

images from same domain, data

URI, http://www.google.com,

https://pbs.twimg.com,

http://img.youtube.com, and

twitter.com

http://themes.googleusercontent.com/
http://themes.googleusercontent.com/
http://themes.googleusercontent.com/
http://themes.googleusercontent.com/

A library for encoding in JavaScript is Encoder.js. It provides various methods for escaping.

Method Description

HTML2Numerical

This method converts HTML entities to their

numerical equivalents.

numEncode This method numerically encodes unicode

characters.

htmlEncode This method encodes HTML to either numerical

or HTML entities. This is determined by the

EncodeType property.

XSSEncode This method encodes the basic characters used

in XSS attacks to malform HTML.

correctEncoding This method corrects any double encoded

ampersands.

stripUnicode This method removes all unicode characters.

http://www.strictly-software.com/htmlencode

http://www.strictly-software.com/scripts/downloads/encoder.js

or

https://gist.github.com/ajinabraham/1af8216dfb6f959503e0

DOMPurify is a DOM-only XSS sanitizer for HTML, MathML and SVG. It prevents DOM

clobbering and supports whitelisting. It can be used with other JavaScript frameworks.

https://github.com/cure53/DOMPurify

 Usage:

1. <script type="text/javascript" src="purify.js"></script>
2. var clean = DOMPurify.sanitize("<p>text<iframe/\/src=jAva script:alert(

3)>"); //becomes <p>text</p>
3. alert(clean);

js-xss is a library for escaping. It also includes a whitelist.

https://github.com/leizongmin/js-xss

XSS is a node.js module for escaping and sanitizing.

 Usage:

1. var xss = require('xss');
2. var html = xss('<script>alert("xss");</script>');
3. console.log(html);

For escaping, use method in jQuery instead of method.

Use method to encode (). It also escapes backticks () character since IE

interprets it as an attribute delimiter.

mootools provide method that will escapes all regular expression characters

from the string.

 method strips the string of its tags and any string in between them. Never use

 as this method will evaluate the string before striping.

 Vulnerable Example

1. "<script>alert(1)</script>".stripScripts(true); // This method will
trigger the alert() function and then strip the string.

 Safe Example

1. "<script>alert(1)</script>".stripScripts(); //This method will strip
the "<script></script>" tags including "alert(1)".

The converts a JSON string into a JavaScript object and checks for any

hazardous syntax and returns null if any found.

For escaping HTML, use model

If you are using Underscore template, for escaping HTML, use instead of . For

escaping HTML use . Never use as it will evaluate the string.

The syntax for escaping in spine should be used with care.

For escaping use it will escape the string and print it.

In contrary to Backbone.js will evaluate the string and print its return value

without escaping it. So don't get confused if you are using both JS Frameworks.

For XSS protection, AngularJS uses Strict Contextual Escaping (SCE). SCE also allows

whitelisting. Technically the service provides XSS Protection. We need to include

service to the code. SCE defines a trust in different context. Consider the following context

in SCE.

SCE Service Description

$sce.HTML

For HTML that's safe to source into the application.

The ngBindHtml directive uses this context for

bindings. If an unsafe value is encountered and the

$sanitize module is present this will sanitize the

value instead of throwing an error.

$sce.CSS

For CSS that's safe to source into the application.

Currently unused. You can use it in your own

directives.

$sce.URL

For URLs that are safe to follow as links. Currently

unused (<a href= and <img src= sanitize their urls

and don't constitute an SCE context.

$sce.RESOURCE_URL

For URLs that are not only safe to follow as links,

but whose contents are also safe to include in your

application. Examples include ng-include, src /

ngSrc bindings for tags other than IMG (e.g.

IFRAME, OBJECT, etc.)

Note that $sce.RESOURCE_URL makes a stronger statement about the URL than $sce.URL

does and therefore contexts requiring values trusted for $sce.RESOURCE_URL can be used

anywhere that values trusted for $sce.URL are required. $sce.JS For JavaScript that is safe

to execute in your application's context and is currently unused.

https://docs.angularjs.org/api/ng/service/$sce

 - This function encodes only (). It also encodes

() into () if the ENT_QUOTES flag is given. It is always safe to stay with 'UTF-8' as

the character set. UTF-8 is the default character set starting from PHP 5.4. This version also

supports some new flags other than ENT_QUOTES like

Flags Description

ENT_HTML401

Handle code as HTML 4.01.(default)

ENT_XML1

Handle code as XML 1.

ENT_XHTML

Handle code as XHTML.

ENT_HTML5

Handle code as HTML 5.

 Example:

1. echo htmlspecialchars($string, ENT_QUOTES | ENT_XHTML, 'UTF-8');

It is important to note that cannot prevent XSS in the context of

JavaScript, style, and URL context.

 can be used for encoding URLs.

Use function in PHP for encoding user specified data into UTF-8.

If you are echoing something with the php function a safer way to use that

function will be like

along with the Content-Type header set to

HTML Purifier is one satisfactory PHP library for preventing XSS and also works based on a

whitelist.

It is simple and easy to configure and use.

1. require_once '/path/to/HTMLPurifier.auto.php';
2. $config = HTMLPurifier_Config::createDefault();
3. $purifier = new HTMLPurifier($config);
4. $clean = $purifier->purify($output_to_be_reflected_at_browser);
5. echo $clean;

http://htmlpurifier.org/live/INSTALL

 (PHP-Intrusion Detection System) is a security layer for your PHP based web

application. The IDS neither strips, sanitizes nor filters any malicious input, it simply

recognizes when an attacker tries to break your site and reacts in exactly the way you want

it to.

https://phpids.org/

 provides the variable modifier escape. It is used to encode or escape a variables in

the context of html, url, single quotes, hex, hexentity, javascript and mail. It is html by

default.

Escape Modifier Description

{$string|escape,'UTF-8'}

Default:html, Basic HTML Encoding

which escapes ()

{$string|escape:'html','UTF-8'} Basic HTML Encoding which escapes

()

{$string|escape:'htmlall','UTF-8'} HTML Encoding (escapes all html

entities)

{$string|escape:'url'} URL Encoding

{$string|escape:'quotes'} Escaping Quotes

{$string|escape:"hex"} Hex Encoding

{$string|escape:"hexentity"} Hex Entity Encoding

{$string|escape:'mail'} Converts Email to Text

{$string|escape:'javascript'}

Escapes JavaScript, and keep in mind

this implementation supports only

strings.

Use OWASP Java Encoder that supports encoding user given data in Basic HTML Context,

HTML Content Context, HTML Attribute context, JavaScript Block context, JavaScript

Variable context, URL parameter values, REST URL parameters, and Full Untrusted URL.

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project#tab=Use_the_Java_Enco

der_Project

 is a set of escaping routines for fixing cross-site scripting (XSS)

in Java web applications. It supports Java Expression Language (EL) notation and plain Java

functions.

Escape Methods Description

cov:htmlEscape(string) Performs HTML escape

cov:jsStringEscape(string) Performs JavaScript string escape

cov:asURL(string) Performs URL escape and sanitize dangerous

scheme like

cov:cssStringEscape(string) Performs CSS String escape

cov:asNumber(string) Checks if the input string is a number else the

default value will be zero

cov:asCssColor(string) Allows a string with color specified as text or

hex and prevents injection.

cov:uriEncode(name) Performs URL Encoding

https://github.com/coverity/coverity-security-library

) is a free, open source, web application

security control library that can sanitize untrusted data.

Method Description

ESAPI.encoder().encodeForHTML() Escape HTML

ESAPI.encoder().encodeForHTMLAttribute() Escape HTML Attribute

ESAPI.encoder().encodeForJavaScript() Escape JavaScript String

ESAPI.encoder().encodeForCSS() Escape CSS String

ESAPI.encoder().encodeForURL() Escape URL

https://code.google.com/p/owasp-esapi-java/wiki/Welcome?tm=6

The Class () in .NET provides various methods for escaping

untrusted data.

Methods Description

HtmlEncode() HTML Encoding.

HtmlAttributeEncode()

Basic HTML Encoding. It Encodes only

().

UrlEncode() URL Encoding.

JavaScriptStringEncode() JavaScript string encoding.

For normal web application Class is enough. But for web application that deals

with reflecting data to XML and other contexts, there is Class

() with added advantages like whitelist and is

inbuilt with .NET 4.5. It includes the following methods for XSS Protection.

Methods Description

HtmlEncode()

Html Encoding and optionally

specifies whether to use HTML 4.0

named entities.

HtmlAttributeEncode()

Encodes the data to be reflected in

an HTML attribute.

HeaderNameValueEncode()

Encodes a header name and value

into a string that can be used as an

HTTP header.

HtmlFormUrlEncode()

Encodes the data for use in form

submissions whose MIME type is

"application/x-www-form-

urlencoded" and optionally specifies

the character encoding.

JavaScriptStringEncode()

JavaScript string encoding.

UrlEncode()

URL Encoding and optionally

specifies the character encoding.

UrlPathEncode()

Encodes the path for using in a URL.

XmlAttributeEncode() &

XmlEncode()

Encodes the data for use in XML

attributes.

For older .NET version, Install Microsoft Web Protection Library from

http://wpl.codeplex.com/

Function Description

{{ string }} django is a having auto escaping feature. This

will escape the string.

escape()

This function will escape ()

conditional_escape()

This function is similar to function,

except that it doesn’t operate on pre-escaped

strings, so it will not double escape.

urlencode()

This function can be used for URL encoding.

Method Description

sanitize() This method can be used to sanitize/html encode

the user specified data and is supported by a

whitelist. It also strips tags with invalid

protocols, like especially. It does its

best to counter any tricks used, like throwing in

unicode/ascii/hex values to get past the

 filters.

sanitize_css()

This method will sanitize the string so that you

can safely use it in the context of CSS.

strip_links()

This method will strip all link tags from a string.

h() or html_escape() This method will encode () into (

respectively.

html_escape_once()

This method is similar to with a

difference that it will encode everything that was

not previously encoded.

json_escape() This method will encode)

into (

respectively. Also keep in mind this method only

works with valid JSON. Using this on non-JSON

values can result in XSS.

You can specify a whitelist with method like

This will strip out anything other than the mentioned tags and attributes.

=> OpenSecurity

=> Please e-mail me at email@opensecurity.in.

strip_links('Blog: Visit.')

=> Blog: Visit.

ModSecurity - https://www.modsecurity.org/

IronBee - https://www.ironbee.com/

OWASP Xenotix XSS Exploit Framework

IronWASP

Acunetix Free

arachni

ImmuniWeb Self-Fuzzer Addon for Firefox

Mario Heiderich, Ahamed Nafeez

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/List_of_useful_HTTP_headers

https://www.owasp.org/index.php/HttpOnly

https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

https://code.google.com/p/owasp-esapi-java/

http://www.w3.org/TR/CSP11/

https://w3c.github.io/webappsec/specs/content-security-policy/

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

https://tools.ietf.org/rfc/rfc7034.txt

http://msdn.microsoft.com/en-

us/library/system.web.security.antixss.antixssencoder(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/system.web.httputility(v=vs.110).aspx

http://openmya.hacker.jp/hasegawa/security/utf7cs.html

http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

http://www.slideshare.net/x00mario/the-innerhtml-apocalypse/46

http://wpl.codeplex.com/

http://opensecurity.in/

http://cure53.de/fp170.pdf

https://www.modsecurity.org/

https://www.ironbee.com/

http://taligarsiel.com/Projects/howbrowserswork1.htm

https://frederik-braun.com/xfo-clickjacking.pdf

http://mootools.net/docs/core/Types/String

http://www.strictly-software.com/htmlencode

http://backbonejs.org/#Model

https://www.ng-book.com/p/Security/

https://docs.angularjs.org/api/ng/service/$sce

http://spinejs.com/docs/views

https://github.com/cure53/DOMPurify

https://github.com/leizongmin/js-xss

http://api.rubyonrails.org/classes/ERB/Util.html

http://api.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html

http://yuilibrary.com/yui/docs/api/classes/Escape.html#method_html

http://prototypejs.org/doc/latest/language/String/prototype/escapeHTML/

http://docs.php.net/manual/en/function.htmlspecialchars.php

http://www.smarty.net/docsv2/en/language.modifier.escape

https://www.superevr.com/blog/2012/exploiting-xss-in-ajax-web-applications/

http://blog.opensecurityresearch.com/2011/12/evading-content-security-policy-with.html

http://www.janoszen.com/2012/04/16/proper-xss-protection-in-javascript-php-and-

smarty/

http://wpcme.coverity.com/wp-

content/uploads/What_Every_Developer_Should_Know_0213.pdf

